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Abstract-We present exact symbol error rate (SER)
performance analysis for M-QAM OFDM systems over Ricean
and Rayleigh fading is analyzed. Both slow and fast quasi-static
fading as well as frequency-selective and -nonselective channels
are considered.

Index Terms-OFDM, QAM, symbol error rate, fading
channels

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM) employs
parallel transmission of data carried by orthogonal subcarriers
over overlapping subbands to avoid high speed equalization,
combat impulse noise, mitigate multipath distortion, and fully
use the available bandwidth [1]-[4]. For frequency-selective
fading channels, the OFDM system can eliminated
inter-symbol interference (ISI) caused by multipath delay
spreads by use of guard intervals or cyclic prefix in data blocks
[5].
However, the OFDM system is not without disadvantages.

Multi-carrier systems are more sensitive to symbol timing
errors and frequency offsets than single-carrier systems [5], [6].
Frequency offsets may arise from Doppler shift and mismatch
of local oscillator (LO) carrier frequencies between the
transmitter and the receiver. Both timing errors and frequency
offsets will destruct the orthogonality between subcarriers
resulting in inter-channel or inter-carrier interference (ICI) and
hence degrading system performance [6]. Thus, timing and
frequency estimation and synchronization are required in
OFDM systems and numerous techniques have been proposed
in the literature [6]-[ 11]. Frequency offsets and symbol timing
errors are not the only causes for ICI. The ICI can also be
caused by fading rate [2]. When fading is fast, ICI will exist
[12]. But when fading is slow such that the fading is static over
an OFDM symbol block, then no ICI will be present due to
fading [12].

Analysis works on OFDM digital performance over slow or
fast fading and frequency-selective or -non slective channels
have appeared in the literature [13]-[17]. Most of these works
treat uncoded OFDM using approximations. In this work, we
shall analyze the exact SER performance for OFDM systems
employing square M-QAM over Ricean and Rayleigh fading.
The paper is organized as follows. Section II gives the signal

and channel model. Section III analyzes SER performance.
Then, Section IV presents simulation results. Finally, Section
VII draws conclusions.

II. SIGNAL AND CHANNEL MODEL
For an OFDM system, N complex data symbols Xk over a

time interval T constitute a data block, k = 0,1,...,N -1. Thus
each symbol occupies a symbol interval At = T/N. The signal
bandwidth is 1/At. Data are transmitted one block at a time
(block rate= 1/T and symbol rate = 1 / At ). Before a block is
transmitted, the N symbols { Xk } in that block are first passed
through an N-point inverse discrete Fourier transformer (IDFT)
to produce N parallel complex outputs given as

1 N-1
x t EX ej2 N n = 0 1,...IN 1.)
n

k=O

Thus we are viewing Xk as being in the frequency domain and

xn in the time domain. The parallel { xn } are then converted to

a serial sequence over the block by a parallel-to-serial (P/S)
converter. Next, the serial sequence is transformed into analog
form by digital-to-analog (D/A) conversion. The D/A
conversion is equivalent to letting fk = k T , and

t = nAt = nT /N. The analog form is
1 N-1

x(t) - XkeJ k < t < T. (2)

Equation (2) only represents the first block. If the ith block is
spoken of, we should replace t by t + iT and the range of t
should be iT < t < (i + 1)T . In view of (2), x(t) can be viewed
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as a sum of complex subcarriers respectively at frequen
{ f, kIT } with amplitudes Xk over the block, e
subcarrier occupies a subband of width Af = I/T. With
subband spacing, it is readily shown that all subcarriers
orthogonal to one another. The total signal bandwidt]
W = NAf = N / T . Now, the complex signal x(t)
frequency up-shifted to the channel passband for transmis
by two quadrature local oscillators (LO) at a center frequc
f One LO mixes a cosine carrier with the real part of

and another mixes a sine carrier with the imaginary part of
In other words, the transmitted passband signal is of the f

s(t) = Re[x(t)e j'2 tz]t x(t) is simply the equiva
lowpass signal [5].
We shall assume a frequency-selective fading channel wl

equivalent lowpass discrete-time channel response can
modeled by a time varying tapped delay line [5]. Thus,
equivalent lowpass discrete frequency response of the chai
is given by

v-1

Hk = Z h e j27kN, k = 0 1... N -1
m=O

where hm is the discrete-time channel impulse response oi
gain and v is the channel dispersion length. If hm = 0

m .0, we have a frequency-nonselective or flat fading chai
For most fading media, { hm } can be assumed spati

uncorrelated [5], i.e., E[(hm - hm)(hm- hm )] = 0 m .

where E[.] denotes expectation and hm E[hm]. In this w

we will consider two quasi-static fading cases: 1) hm rem

constant over one symbol interval At (fast quasi-static fad
2) hm remains constant over one block interval T (s
quasi-static fading). Then for the fading process, we ass-
{ hn } are uncorrelated complex Gaussian random varia

(RV). We also assume the tap gain ho corresponding to

shortest path delay contains scattered paths plus a line-of-s
(LoS) component or the specular component. Then, ho
non-zero mean Gaussian RV and the amplitude ho is a ]

RV. The rest { hn, m . 0 } are zero mean Gaussian RVs

{ hm l, m . 0 } are Rayleigh RVs. By virtue of (3), we ea

find that Hk is a complex Gaussian RV with mean equw
v

E[Hk] =h and variance equal to V[Hk] Z h(
m=O

where <2 = V[hm] is the variance of hm. If the numbe

subcarriers in x(t) of (2), N is sufficiently large, then
subband width Af is very small and the magnitude of each
subband channel frequency response can be approximated
constant- Hk 1. Since each subcarrier is of duration T, so

[cies
each
this
, are
h is

is
,sion
-ncy
x(t)

sinc[(f fk)T] sin= (f fk)T [1]. The sinc function
;T(f -fk)T

spans the entire frequency spectrum. The kth subband main
lobe is of width 21T. Thus, even the main lobe will extend
over into the two adjacent subbands. Likewise, neighboring
subband spectra will also extend into the kth subband. This
results in inter-channel or inter-carrier interference (ICI).
However, what matters is the sampled discrete-time data. That
is, we are only interested in the recovery of Xk at the subband

x(t). center frequency. If channel fading is slow with { h, }
form remaining constant over a block duration T, the recovered
dlent discrete-time data will be free of ICI [12]. But when fading is

fast with { hm } remaining constant over only a symbol duration

hose At, then ICI will exist in the sampled discrete data. Aside from
l be ICI, channel dispersion (caused by multipath delay spread) will
,the render inter-symbol interference (ISI) within a block.
nnel Fortunately, ISI can be completely eliminated by inserting a

guard interval or appending a cyclic prefix to each block of data
[5]. But guard intervals or cyclic prefixes cannot help get rid of
ICI.

r tap III. SYMBOL ERROR RATE ANALYSIS

for A. Slow Quasi-Static Fading
nnel. For slow quasi-static fading, the DFT outputs are given by
ially Rk Yk +Zk =HkXk+Zk, k =0,1,...,N-1, (4)

, where { Yk } are noiseless DFT outputs and { Zk } are identical

rork, zero-mean Gaussian RVs with variance, say, Cz2 The signal
power is the same for all subchannels as given byais22foafiel 7x = E[I Xk 12]. Thus, for a fixed channel realization, the

[ing); received signal-to-noise ratio (SNR) of the kth subband is
slow =1 Hk 12 72 /K72 (5)
ume Consider square M-QAM signals, then using the moment
[bles generating function (MGF)-based approach [18], by averaging
the the conditional M-QAM SER (conditioned on a fixed channel

night realization) over all channel realizations, we can readily obtain

Pq 19
the overall average M-QAM SER for slow quasi-static fadingla a

Rice

and

isily
al to

012

r of

each
i kth
by a
the

as

4(M -1) y M7(- )dO

4(MM-1)2 A4
M sin-2 )dO, (6)

where g 2 [18] and My (s) f(pOk)eSlcYk is

the MGF of Yk with P(Yk) as the probability density function

(PDF) Of Yk. Note that P(Yk) are identical for all {Y,k} and

{ Yk } are correlated (From (3), all { Hk } are identical complex
Gaussian RV's with mean hk and variance

kth subcarrier has a spectrum of the form



v-1

E(I hm - hm 12). Then from (5), all { yk } are identically
m=O

distributed. However all { yk } are correlated since they are all

related to { hm }.). For Ricean fading, the MGF can be readily

obtained by use of the general MGF formula for Gaussian gain
channels given in [19] as

(lho (7XI Z)expr= ( o /o-5)2s

M '(S) 1 7 0o~o~2](7)

where

k = E[I Hk 2 c2 /(T2 ] 2 Kh0 12
v- (
+y (TI, .(8)
m=o

Then, replacing s in (7) by -g /sin2 0 and substituting the
result into (6) (MGF-based approach [18]), we get the desired
square M-QAM SER for the OFDM system in slow quasi-static
Ricean fading channels. Note that, since all { Y- } are equal,

thus all subbands have the same SER as given by (6). Therefore,
the overall averaged system SER is also the same.

v-1

If h= 0, then E[Hk] Zhmeej2zmkN h 0, the Ricean
m=O

fading reduces to Rayleigh fading. Equations (7) and (8) reduce
to

M,, (s)
1

(1- ks),

From the above analysis, we see that OFDM produces the same
performance result for frequency-selective and flat fading
channels when fading is slow. This means, OFDM is useful for
combating channel frequency selectivity. Obviously, when
slow fading is flat, there is no need to use the complicated
OFDM system. Without channel dispersion in flat fading, no
time domain equalization is required, then a simple single
carrier system can be used with diversity combining to combat
flat fading and there is no need to worry about ICI caused by
frequency offset or symbol timing error.

B. Fast Quasi-Static Fading
We now turn to the more complicated case of fast

quasi-static fading. The noiseless DFT outputs can be shown to
be

N-1 v-1

Yk = m j2;z)kIN
n=O m=O

1N-1 I N-1lN-1

E Hk(n)Xk + E HpN(n)XpeNn=o Nn=o p=op#k

(14)

The first term in (14) is the desired term and second term is the
ICI. For a fixed channel realization (all subband responses are
held constant), as N is usually large so that the ICI is a sum of
many independent RVs ( Xp p 0,..., k - 1, k + 1,...,N ).

We may invoke the central limit theory to assume that the ICI
term can be approximated by a Guassian RV [12]. For a fixed

(9) channel realization, the desired term and the random ICI term
of (14) respectively have the power given as

Yk E[I Hk 2 U7/2] =27K z *2 (10)
C7Z m=O

Then, the two integrals in (6) can be further evaluated so that a
more exact closed form for PM k can be obtained. Using

straightforward calculus on (6), the SER result for slow
quasi-static Rayleigh fading can be shown to be

PM,k [M -
(M 1)

4a(VM _j)2 a
-tan ] (11)

;T ±a2 1 a2
3

where a= 7k Another approach called the
2(M - 1)

pre-averaging method, which is a PDF-based approach, can
also be used to obtain exactly the same result [20], [21]. Note
here that, for slow quasi-static fading, it is ready shown that (6)
and (11) apply to both frequency-selective and flat fading
channels. For flat fading, (8) and (10) must be modified to

72 2

Y= E[I Hk 12 T2 /T2]

7k E[I Hk 12 T /T2f= (X 2

(TZ

072 N-1 N-1
p 7N Hk(n)H, (I),

n=O 1=O
2 N- IN- N-1

PICI N2 ZZZ EH (n)H>lI)ej2;T(n-/)(p-k) N
p On 0/ 0 p()H*(
p=O n=O 1=O
p#k

(15)

(16)

Then, with noise taken into account, the sum of ICI and noise is
still Gaussian having the variance PICl + o7 . Thus, for a fixed

channel realization, the received signal-to- interference plus
noise ratio (SINR) is

y = PS 2(17)
For this SINR, we can use the well-known M-QAM SER
expression under AWGN [5], [12], [18] for the given channel
realization. Then, we remove the condition of fixed channel
realization and consider subband responses Hk (n) and

Hp(n) in (15) and (16) as RVs. Thus now, the Yk of (17) is

treated as a RV. For fast quasi-static fading, even with flat
fading, this Yk has very complicated PDF not just because of
the quotient form given by (17) but also because of the
correlations between subband responses. In the numerator,
{ Hk(n), n = 0,1,..., N -1 } are temporally correlated, while in
the denominator { Hp(n) , n = 0,1,...,N-1 , p =0,1,...

IL .1 IL 1-1



k - 1, k + 1,..., N -1 } are both temporally and spatially
correlated. As a result, All { yk } are correlated but identically

distributed and are no more Ricean, which means the MGF of
(7) can no longer be applied thus making it difficult to use (6).
However, we can resort to numerical calculations to obtain the
PM k .We take the AWGN M-QAM SER conditioned on 7k
for a given channel realization and average it over sufficient
number of Yk realizations, each realization of Yk is obtained

from correlated random calls of the Gaussian RVs { h (n) }

(for a given m, hm (n) and hm (1) are correlated) and by
substituting (3) into (15)-(17). Such a simulation approach has
also been adopted by [22] for single carrier equalizers over
slow fading channels and by [23], [24] for frequency-domain
decision feedback equalizers for single carrier OFDM systems
over fading channels. In simulations, we use modified Jakes
model [25] for ho (n) and { hm(.n), m.O} and (12) and (13)
are used for channel correlations. For the fast fading case, in
view of (34)-(36), Yk will be different for different k. Thus

PMk will be different for different k. The system SER is

obtained by averaging over all subchannel SER's. Hence
i N-1

PM PM,k (18)
Nk=o

IV. NUMERICAL EXAMPLES
We now present some simulation results of SER performance

for slow and fast quasi-static Ricean/Rayleifg fading channels.
Figure 2 shows the SER vs. SNR performance curves for
OFDM in slow quasi-static Ricean/Rayleigh fading channels.
As noted earlier, for this case, flat and frequency-selective
channels yield the same results. In simulations, we have
assumed a frequency-selective channel model with channel
taps corresponding to scattered paths (i.e., ho ,h,...h ) having
exponentially decayed tap powers. The dispersion length is
v =4. And we use square 16-QAM signaling with N =16.
Three Ricean factors KR =-°O (Rayleigh), 5dB, and 10dB are
considered. Both theoretical results of (26) and simulation
results (marked by circles) are given and are seen in excellent
agreement.
For fast quasi-static fading, the OFDM SER will not be the
same for flat and frequency-selective channels. However, as
mentioned earlier, use of OFDM for flat fading channels is a
waste. Thus, we will only present results for
frequency-selective channels. Using 16-QAM in OFDM with
N = 16 and with SNR= 72/K2 fixed at 32dB, Fig. 3 shows the

simulation results of SER vs. SINR performance of the first
OFDM subband (k = 0) in fast quasi-static frequency-selective
Ricean/Rayleigh fading channels. The same
frequency-selective channel model with the same three Ricean
factors as for Fig. 1 is used. Simulations for other subbands
show SER results slightly different but very close to that of Fig.
3. Thus the average SER of (37) will closely resemble that of

Fig. 3. Over 50,000 channel realizations have been used for
averaging ( In [24], 20,000 channel realizations are used). As
mentioned earlier, we have used modified Jakes model in
simulations for both Fig. 2 and 3. Although theoretical
closed-form SER expressions are not available for the fast
quasi-static fading case of Fig. 3 to compare with simulation
results, the close agreement between the theoretical and
simulated results for slow quasi-static fading of Fig. 2 as well
as the fact that the same simulation technique has been used by
[22]-[24] should pretty much support the accuracy of the
simulations of Fig. 2. Comparing Fig. 1 and 2, it is seen that
slow fading channels perform better than fast fading channels.
This is within expectations.

V. CONCLUSIONS
For Ricean/Rayleigh fading, we carry out detailed analysis

on M-QAM SER performance in uncoded OFDM system. We
consider slow and fast quasi-static fading as well as
frequency-selective and -nonselective channels. In the cases of
fast quasi-static fading, exact ICI expressions are used without
any approximations. For slow quasi-static fading, exact
closed-form expression for SER is derived. Simulation results
are found in excellent agreement with the theoretical results.
For fast quasi-static fading, the SER performances for
frequency-selective channels are presented by simulations.
Slow fading channels outperform fast fading channels as
expected.
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Figure 1. Theoretical and simulated (marked with circles) SER performance for
16 QAM in 16 point OFDM over slow Ricean and Rayleigh fading channels.
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Figure 2. Simulated first subband SER performance of 16 QAM in 16 point
OFDM over frequency-selective fast Ricean and Rayleigh fading channels.
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